光華講壇——社會名流與企業家論壇第6567期
主 題:Robust estimation of number of factors in high dimensional factor modeling via Spearman's rank correlation matrix利用Spearman秩相關矩陣對高維因子模型中因子數量進行穩健估計
主講人:南方科技大學統計與數據科學系 李曾副教授
主持人:統計學院 林華珍教授
時間:9月15日 下午16:00-17:00
舉辦地點:柳林校區弘遠樓408會議室
主辦單位:統計研究中心和統計學院 科研處
主講人簡介:
Dr Li is currently an associate professor in the Department of Statistics and Data Science, Southern University of Science and Technology. Previously she was a postdoctoral fellow in the Department of Statistics at the Pennsylvania State University. Dr. Li obtained her Ph.D. degree from the Department of Statistics and Actuarial Science at the University of Hong Kong. Dr. Li’s research covers random matrix theory and high dimensional statistics.
李曾,南方科技大學統計與數據科學系副教授。2017年獲得香港大學統計與精算學系博士學位,2017-2019年先后在美國華盛頓大學、賓夕法尼亞州立大學從事博士后研究工作,并于2019年入職南方科技大學。主要研究領域為隨機矩陣理論、高維統計分析等,研究成果發表于The Annals of Statistics, Scandinavian Journal of Statistics 等國際統計學期刊。
內容簡介:
Determining the number of factors in high-dimensional factor modeling is essential but challenging, especially when the data are heavy-tailed. In this paper, we introduce a new estimator based on the spectral properties of Spearman’s rank correlation matrix under the high-dimensional setting, where both dimension and sample size tend to infinity proportionally. Our estimator is applicable for scenarios where either the common factors or idiosyncratic errors follow heavy-tailed distributions. We prove that the proposed estimator is consistent under mild conditions. Numerical experiments also demonstrate the superiority of our estimator compared to existing methods, especially for the heavy-tailed case.
確定高維因素建模中的因素數量是必要的,但具有挑戰性,特別是當數據是重尾的時候。在高維環境下,維數和樣本量都成比例趨近于無窮大,本文基于Spearman秩相關矩陣的譜特性,引入了一種新的估計量。主講人的估計器適用于公共因素或特殊誤差遵循重尾分布的情況。主講人證明了所提出的估計量在溫和條件下是一致的。數值實驗也證明了該估計方法與現有方法相比的優越性,特別是在重尾情況下。