光華講壇——社會名流與企業家論壇第6651期
主題:強化學習基礎
主講人:倫敦政治經濟學院 史成春副教授
主持人:西南財經大學統計學院 常晉源教授
時間:11月4日09:00-12:00
舉辦地點:西南財經大學光華校區光華樓1003會議室
主辦單位:數據科學與商業智能聯合實驗室 統計學院 科研處
主講人簡介:
Chengchun Shi is an Associate Professor at London School of Eco- nomics and Political Science. He is serving as the associate editors of JRSSB, JASA (TM), JASA (CS) and Journal of Nonparametric Statistics. His research focuses on developing statistical learning methods in reinforcement learning, with applications to healthcare, ridesharing, video-sharing and neuroimaging. He was the recipient of the Royal Statistical Society Research Prize in 2021 and IMS Tweedie Award in 2024
史成春是倫敦經濟學院和政治科學學院的副教授。他目前擔任《皇家統計學會B期刊》(JRSSB)、《美國統計協會期刊》(JASA,技術與方法版)、《美國統計協會期刊》(JASA,計算科學版)和《非參數統計雜志》的副主編。他的研究重點是開發強化學習中的統計學習方法,并將其應用于醫療保健、拼車、視頻分享和神經成像等領域。他曾于2021年獲得皇家統計學會研究獎,并在2024年獲得了IMS Tweedie獎。
內容簡介:
Reinforcement learning (RL, see Sutton and Barto, 2018, for an overview) is a powerful machine learning technique that allows an agent to learn and interact with a given environment, to maximize the cumulative reward the agent receives. It has been one of the most popular research topics in the machine learning and computer science literature over the past few years. Significant progress has been made in solving challenging problems across various domains using RL, including games, recommender systems, finance, healthcare, robotics, transportation. This lecture mainly focusses on foundations of Reinforcement Learning. We will also provide code to implement various RL algorithms discussed in the lecture. The materials of this course are available on https://github.com/callmespring/RL-short-course.
強化學習(RL,見 Sutton 和 Barto,2018的概述)是一種強大的機器學習技術,它允許一個代理學習并與給定的環境互動,以最大化代理收到的累積獎勵。在過去幾年中,它一直是機器學習和計算機科學文獻中最流行的研究主題之一。在各種領域使用 RL 解決挑戰性問題方面取得了顯著進展,包括游戲、推薦系統、金融、醫療保健、機器人技術和交通。此次講座主要介紹強化學習基礎。我們還將提供代碼來實現講座中討論的各種 RL 算法。這個課程的材料可以在https://github.com/callmespring/RL-short-course上找到。