光華講壇——社會名流與企業家論壇第6573期
主題:An introduction to high dimensional asymptotics 高維漸近導論(系列講座)
主講人:羅格斯大學 韓啟陽副教授
主持人:西南財經大學統計學院 常晉源教授
時 間:2024年6月17日(周一)上午9:00-11:30 下午14:30-17:00
2024年6月18日(周二)上午9:00-11:30 下午14:30-17:00
2024年6月19日(周三)上午9:00-11:30 下午14:30-17:00
舉辦地點:西南財經大學光華校區光華樓10樓1003
主辦單位:數據科學與商業智能聯合實驗室 統計學院 科研處
主講人簡介:
Qiyang Han is an Associate Professor of Statistics at Rutgers University. He received a Ph.D. in Statistics in 2018 from University of Washington under the supervision of Professor Jon A. Wellner. His research expands broadly in mathematical statistics and high dimensional probability, with a particular focus on empirical process theory and its applications to nonparametric and high dimensional statistics. He is a recipient of the NSF CAREER award in 2022, the Bernoulli Society New Researcher Award in 2023, and the David G.Kendall's Award in Mathematical Statistics in 2024.
韓啟陽,羅格斯大學統計學副教授,于 2018 年獲得華盛頓大學統計學博士學位,師從 Jon A. Wellner 教授。他的研究領域廣泛,包括數理統計和高維概率,尤其側重于經驗過程理論及其在非參數和高維統計中的應用。他于 2022 年獲得美國國家科學基金會 CAREER 獎,2023 年獲得伯努利學會新研究員獎,2024 年獲得 David G.Kendall 數理統計獎。
內容簡介:
High dimensional asymptotics has emerged as a new theoretical paradigm to precise characterize the stochastic behavior of a large number of statistical estimators, finding a wide range of applications beyond the reach of standard theoretical methods. In these talks, we will briefly introduce three main theoretical approaches in this field. In the first part, we will discuss the leave-one-out method, originally introduced in the context of robust regression. In the second part, we will introduce a Gaussian process approach, currently known as the Convex Gaussian Min-Max Theorem framework. In the third part, we will discuss an algorithmic approach, known as the Approximate Message Passing method. We will provide both rigorous, theoretical foundations for these approaches, and illustrate the utility of these methods in some of the canonical statistical settings and the more recent interpolating estimators. Time permitting, I will also briefly discuss more recent theoretical developments in this field.
高維漸近理論已經成為一種新的理論范式,可精確描述大量統計估計量的隨機行為,其應用范圍超出了標準理論方法的范圍。在本系列講座中,我們將簡要介紹該領域的三種主要理論方法。第一部分,我們將討論留一法,該方法最初是在穩健回歸的背景下引入的。第二部分,我們將介紹高斯過程法,目前稱為凸高斯極大極小定理框架。第三部分,我們將討論一種算法,即近似消息傳遞算法。我們將講解這些方法嚴格的理論基礎,并將在一些典型的統計設置和較新的插值估計量中說明這些方法的實用性。如果時間允許,我還將簡要討論該領域的更多最新理論進展。