光華講壇——社會名流與企業家論壇第6541期
主 題:Learning Short and Long Term Failure Patterns from Massive Network Failure Data 從大量網絡故障數據中學習短期和長期故障模式
主講人:新加坡國立大學 葉志盛教授
主持人:管理科學與工程學院 肖輝教授
時間:6月4日 9:30-11:30
舉辦地點:柳林校區通博樓D301會議室
主辦單位:管理科學與工程學院 科研處
主講人簡介:
葉博士獲得清華大學材料科學與工程和經濟學聯合學士學位(2008)。獲新加坡國立大學博士學位。他目前是新加坡國立大學工業系統工程與管理系教授兼系主任。他的研究領域包括可靠性建模、估計和優化、基于狀態的維護和數據驅動的決策。他的研究成果發表在可靠性、統計學和運營管理領域的旗艦期刊上,包括Technometrics、JQT、IISE Trans、ITR、RESS、JRSS-B、JASA、Biometrika、JMLR、MSOM和POMS。
內容簡介:
Many lifeline infrastructure systems consist of thousands of components configured in a complex directed network. Disruption of the infrastructure constitutes a recurrent failure process over a directed network. Statistical inference for such network recurrence data is challenging because of the large number of nodes with irregular connections among them. In this talk, we focus on both short term cascading failures and long term ageing failures. Repair of a pipe might generate shocks to neighbouring pipes and cause short term cascading failures. Understanding the short-term cascading failure is important for the utility to allocate additional resources to monitor the neighbouring pipes after a repair. On the other hand, understanding long-term failures is helpful in risk analysis of the whole pipe network and prioritizing replacements of old pipes. Statistical modelling of the two failure modes are extremely challenging because of the large pipe network and the huge failure data set. We develop novel statistical methods that are computationally tractable to fit the data. Applying the methods to a large data set from the Scottish Water network, we demonstrate the usefulness of our models in aiding operation management and risk assessment of the water utility.
許多生命線基礎設施系統由數千個組件組成,這些組件配置在一個復雜的定向網絡中。基礎設施的中斷構成了有向網絡上反復出現的故障過程。由于大量節點之間具有不規則連接,因此對此類網絡復發數據的統計推斷具有挑戰性。在本次演講中,我們將重點關注短期級聯故障和長期老化故障。管道的修復可能會對鄰近的管道產生沖擊,并導致短期級聯故障。了解短期級聯故障對于公用事業公司在維修后分配額外資源來監測鄰近管道非常重要。另一方面,了解長期故障有助于對整個管網進行風險分析,并優先更換舊管道。由于管網龐大,故障數據集龐大,兩種失效模式的統計建模極具挑戰性。我們開發了新的統計方法,這些方法在計算上易于處理以擬合數據。將這些方法應用于蘇格蘭水網的大型數據集,我們證明了我們的模型在幫助水務公司的運營管理和風險評估方面的